5. CONICS AND QUADRIC
SURFACES

85.1. Conics

The equation of a circle, centred at the origin and with

radius r, isx?+y?=r2,
An ellipse centred on
the origin, and with its
axes along the x- and y-

»

a

axes, has an equation of
the form:
X2 y?

? +b2—l.

-

y-axis

Here, a and b are the semi major and axes.

Both of these have the form Ax? + By? = 1. Once we move
the centre we introduce x and y terms. For example, if the
above ellipse is moved to the point

(h, k) its equation becomes
(x-h)?*  (y—k)
2 T
This has the form:
Ax?+ By?+ Cx + Dy =1.

=1

i

141




Once we start rotating the axes we introduce xy terms.

The standard rectangular hyperbola has equation xy = 1,
but if we rotate it through 45° so that the axes of symmetry
lie along the coordinate axes its equation becomes:

X2 —y?=2,

These are examples of conics. The geometrical definition
of a conic is that it is the intersection of a cone with a
plane. Traditionally a cone has a base, but the cone we’re
thinking of here is what you might call a ‘double cone’. If
you rotate a line through another line that intersects the
original line, the infinite surface that results is a cone.

hyperbola
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A conic is usually what we
would call a ‘curve’ but it’s
possible, Dby taking the
intersecting plane through
the vertex of the cone, to get
a pair of straight lines, or
even a single point. These are
called degenerate conics.

Example 1: The cone x* + y? = 72 has its vertex at the
origin and its axis of rotational symmetry along the z-axis.
If we intersect this with the x-y plane we get just the
origin. If we intersect it with the x-z plane we get a pair
of straight lines.

85.2. Degenerate Conics

The word ‘degenerate’ in mathematics refers to cases that
technically satisfy the definition, but which are
uninteresting because they are much simpler than the
usual examples. Another word that is used in this sense is
‘trivial’, as in the trivial solution to a system of
homogeneous linear equations.

Other degenerate conics arise from a degenerate cone,
namely a cylinder. A cylinder, after all, is the surface
obtained when one line rotates around a parallel one. It
might be argued that these lines don’t intersect. We
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certainly don’t want to include the case of two skew lines
intersecting, but we sometimes consider two parallel lines
as intersecting at a ‘point at infinity’. In order to make this
geometric definition agree with the algebraic definition
that we’ll shortly present, we must include a cylinder as
an honorary cone.

Degenerate conics include, as we have seen, a pair of
intersecting straight lines. Intersecting a cylinder with a
plane we get circles and ellipses (these are certainly not
degenerate but we can get them from an actual cone), a
pair of parallel lines, a single line and the empty set. These
last three are considered degenerate.

Example 2: Intersecting the cylinder x? + y? = 1 with the
X-z plane we get a pair of parallel lines, at a distance of 2
apart. In the x-y plane we can get such a pair of parallel
lines from the equation x? — 1 = 0.

Example 3: Intersecting the cylinder x? + y? = 1 with the
plane x = 1 (atangent plane to the cylinder) we get a single
line.. In the x-y plane we can get a single line from the
equation x2 — 2x + 1 = 0.. Since this is (x — 1)? = 0 the line
is the one with the simpler equation x = 1.
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Example 4: Intersecting the cylinder x? + y? = 1 with
plane x = 2 we get the empty set. In the x-y plane we can
get the empty set from the equation x>+ 1 =0.

85.3. The Algebraic Definition of a Conic
The algebraic definition of a conic is that it is the set of
points that satisfy an equation of the form:

ax? + by? + 2gx + 2fy + 2hxy + ¢ =0
where at least one of a, b and h is non-zero.

It can be shown that the two definitions agree, provided
we allow the cylinder to be considered as a degenerate
cone. However the only extra shapes that arise by
including the cylinder are degenerate ones.

Throughout this chapter we’ll only be considering
vectors in R*, where the distinction between vectors and
scalars can be maintained. So we’ll revert to the practice
of printing vectors in bold type.

Consider the conic ax? + by? + 2gx + 2fy + 2hxy + ¢ = 0.

a h g
X
If weletv=|y| and Q = h bt then we can
1 g f c

express the equation as vIQv = 0.
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Strictly speaking it’s thelxl matrix whose single
component is this expression, but we identify 1x1
matrices with their associated scalar.

In most cases, as we show in the next theorem, we can
translate the conic so as to eliminate the x and y terms to
obtain an equation of the form ax? + by? + 2hxy = c.
Moreover, if ¢ # 0 we can divide through by ¢ and obtain
an equation of the form:
ax? + by? + 2hxy = 1.

So, apart from those cases where translation cannot
remove the x and y terms, a conic has one or other of the
forms:

ax? + by? + 2hxy = 1 or

ax? + by? + 2hxy = 0.

X a h
If we now put v = y and Q = h b We can write

these equations as either viQv =1 or viQv = 0.

Theorem 1: If a conic has the equation:

ax? +by? + 2gx + 2fy + 2hxy +¢c=0
and h? # ab then after a suitable translation the equation
becomes:

aX?+bY?+ 2hXY =K, for some K.
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Proof: Suppose h? = ab. Let X =x—-pand Y =y — q for

some p, Q.

The lines x = p and y = g become the new axes and (p, q)

gets translated to the origin.

Then a(X + p)* + b(Y +q)? + 2g(X + p) + 2f(Y +q)

+2h(X +p)(Y +q)+c=0.

Hence:

aX?+bY2+2hXY +2(ap + g + hg)X + 2(bg + f + hp)Y
+ (2p? + 20° + 2gp + 2fq + 2hpq + ¢) = 0.

Since h? = ab we can solve the equation:

o)) (%)

Using these values of p, g we get, as the equation of the
translated conic:

aX?+bY?+2hXY =K
where K = — (2p? + 2¢? + 2gp + 2fq + 2hpg + ¢). ¥ ©

Example 5: Find a translation of the conic
3X2+y?+2xy+ 10x -6y +7=0

so that it has an equation with no x and y terms.

Solution: Translate (p, q) to the origin.

Then X=x-p,Y=y—q.

Hence 3(X +p)* + (Y +g)* +2(X +p)(Y +q)
+10(X+p)-6(Y+q)+7=0,andso

3X2+ Y2+ 2XY +2(3p+q+5)X+2(q+p-3)Y

+(3p? + 0>+ 2pq + 10p — 6g + 7) = 0.
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(3 LY(p) (-5
Solving (1 J(CJ: 3jweget:

p £3 1}_1—5 (1 -1\(-5) (-4
o=l 3130 SR
So, translating (-4, 7) to the origin the equation becomes:

3X2+ Y2+ 2XY =34,

If ab = h? the general conic:
ax? + by? + 2gx + 2fy + 2hxy +¢c=0

can be translated so that it has an equation of the form:

axX?+bY?+2hXY =K.
If K = 0 we can divide through by K and so put the
equation in the form:

aX?+bY? + 2hXY =1.
The expression aX? + bY2 + 2hXY is called a quadratic
form.

85.4. Quadratic Forms

A quadratic form is an expression of the form v'Qv,
X1

X2 ) ) ]
where v = and Q is an n x n real symmetric matrix.

Xn
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Example 6: A quadratic form in two variables x, y has the

a h)(x
form ax? + by? + 2hxy = (X, ) h b)ly)

Example 7: The expression:
5X2 +y2 — 272 + 4xy — 2xz + 10yz
Is a quadratic form in 3 variables. It can be expressed as

5 2 -1)\(x
x,y,2)| 2 1 5|yl
-1 5 -2/\z

Theorem 2: If Q is an n x n real symmetric matrix and
X1

X : i :
v =| "% | then there exists an orthogonal matrix R, with

Xn
|IR| = 1, and a real diagonal matrix D, such that if u = Rv
then vIQv = u™Du = A2 + 12 + ... + Ap? for some real
numbers A1, Ao, ..., An.
Proof: Let Q be an n x n real symmetric matrix. Then its
eigenvalues, A1, Az,..., An are real. There’s a real
orthogonal eigenmatrix S such that Q = SDS™! = SDS'.
Since |S| = £ 1 we may swap two columns of S to ensure
that |S| = 1.
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Let R =ST. Itis also orthogonal and |R| = 1.
Letu=Rv=S"v=S71v. Thenv=_Su.
So we have vTQv = (Su)"Q(Su)
=u'STQSu
= u'S™(SDS")Su
=u'(STS)D(S'S)u
=u'Du.
= 7\,12 + 7\,22 + ...+ 7\,n2. ®)

Example 8: Consider the conic 6x? + 3y? + 4xy = 1.

_(x _(6 2
Letv—(yj andQ—(2 3).

tr(Q)=9and |Q| =14 so
ro(A) =A2 - +14=(A-T7)(A-2).

The eigenvalues of Q are 2, 7.

4 2 2 1
X:Z:Q—ZI:LZ 1J—>(0 oj

1
S0 (_ 2) IS an eigenvector.

1 2 1 -2
x:7:Q—7|:(2 _4j—> 0 o

2
o) (J IS an eigenvector.
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These are orthogonal, but don’t have unit length. Instead
‘ 1(1 q 1(2
take \/g _9 an \/g 1]

1(1 2) _ _
SoS= E(— 9 J Is an orthonormal eigenmatrix.

Note that |[S| = 1 so we don’t have to swap columns.

2 0
Hence Q = SDST =R"™DRwhere R=STand D = ( j

0 7
If u =Ry, then R — A
vTQv = vIRDRv i o s
=u'Du.

—_ X T _
Ifu—(thhenv Qv =

(X,Y) ((2) SJ (@ so the

equation becomes:
2X% + 7Y? = 1, which is
the equation of an ellipse.

Recall that a 2 x 2 orthogonal matrix with determinant 1
cos 0 —sin 6
has the form [sin 0 cos ej and so corresponds to a
rotation through 6. A similar result holds for a 3 x 3
orthogonal matrix, although we don’t bother to identify
precisely which rotation it corresponds to.
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Theorem 3: A 3 x 3 orthogonal matrix with determinant
1 is the matrix of a rotation.

Proof: Suppose R is a 3 x 3 orthogonal matrix with

|IR| = 1 and let ey, e,, e; be the standard basis vectors.

Then Re;, Re,, Res are mutually orthogonal unit vectors.

Since |R| = 1 they will be a positive triple, like the
standard basis.

Hence the three standard basis vectors can be rotated to
the new basis Re;, Re,, Res. % ©

It follows that a conic of the form ax? + bx? + 2hxy = 1
can be rotated so that its equation has the form:

Ax? + By? = 1.
Similarly, if a conic has the equation Ax? + By? =0 it can
be rotated so that its equation has the form Ax? + By? = 0.

a h
Here A, B will be the eigenvalues of the matrix (h b] :

This results in the following types of conic.

[Here, the symbols have a different meaning to the
coefficients above, but these are the traditional symbols
used for conics.]
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CONIC Ax?+By?’=K

K| A | B Usual Description
Equation
1|+ve|+ve| x* y* ellipse
a2 2"
1+ve|-ve| X Yy _
a? b? "~ hyperbola
1|-ve|+ve| X y* 1
a? b? ~
1|-ve|-ve| X* y* empty set
2t =1
1|+ve| O X2 = a2 pair of parallel lines
1|-ve| O X2 =—a? empty set
1] 0 0 0=1 empty set
1] 0 |+ve y? = b? pair of parallel lines
1] 0 |-ve y2 = —b? empty set
0 |+ve|+ve| x% V2 .
0 —ve —vel a Y 0 origin
0|+ve|—ve| X Yy* _ 0 pair of intersecting
0| _—ve|+ve| @ b*>~ lines
+
8 ve g x=0 line
—ve
0] 0] 0 0=1 empty set
0] 0 |+ve y=0 line
0 0 |—ve -




YOU W|” Conic sections
notice that the
parabola is missing
from this list. That’s
because there is no
translation of the
equation that will
eliminate the x, y
terms. A further analysis will show that this is the only
additional conic.

ellipse
parabola
Mhyperbola

85.5. Quadric Surfaces

The 3 dimensional analogues of conics are quadric
surfaces. These have an equation of the form vIQv = K
where R e =

VvV =

N < X

and Q is a real

1
symmetric matrix.

They include the ellipsoid. If the centre is the origin and
the axes are aligned with the coordinate axes, it has an
equation of the form

X2 2 22
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Other familiar quadric surfaces z
are the (infinite) cylinder
X2 +y? =2 and the AN
(double) cone x? + y? = a%z% /-~ L~
The parabolic mirror is a b al
paraboloid, and this is another 7
example of a quadric surface. ¥ z
As with conics, if we’re given
the equation of a quadric surface we want to be able to
identify the type of surface, where it is located, and how
it’s oriented relative to the axes.

It’s possible to analyse quadric surfaces in the same way

as conics. Most quadric surfaces can be translated so that

the x, y and z terms disappear. (A notable exception is the

paraboloid.) The resulting equation will have the form:
ax? + by? + ¢z + 2gxy + 2hxz + 2kyz =0 or 1.

a g h y
This can be written as (x,y, z)| 9 b K @ =0orl.
h k c

The left hand side of this equation is a quadratic form and

X
can be expressed as v'Qv where v = @ . Because Q is

real and symmetric it has an orthogonal basis of
eigenvectors and its eigenvalues are real.
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By Theorem 2 a quadratic surface with equation vIQv =
1 can be rotated about the origin so that it has an equation
of the form Ax? + By? + Cz% = 1.

If A, B, C are all positive we get an

ellipsoid with an equation which is

. X2 y2 72
normally written as 7tz t 2z =
The constants a, b and c are the
lengths of the semi-axes.

If A, B are positive and C is negative
we get an equation of the form:

X2 2 72 .

2 T )é—g -2 - 1, which is called a
hyperboloid with one sheet.

If A is positive and B, C are negative

X2 y2 2 ] ]

we get? 2 "2 - 1 which is
called a hyperboloid of two sheets.
The word ‘sheet’ here refers to the
separate pieces. Of course if A, B, C
are all negative we get the empty set!

If one coefficient is zero we can get an elliptical prism or
a hyperbolic cylinder. These are like a cylinder but where
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the cross sections are copies of the same ellipse or
hyperbola.

Analysing quadric surfaces with an equation of the form
Ax? + By? + Cz?> =0 we get a cone if A, B and C don’t all
have the same sign. Of course, if they have the same sign
we get just the origin. Further degenerate quadric surfaces
can be obtained by considering the case where one or
more of A, B, C is zero.

NON-DEGENERATE QUADRIC
SURFACES WITH EQUATION
AX* +By*+Cz2=1

# +ve #—ve Surface
coeffs coeffs
3 0 ellipsoid
2 1 hyperboloid with one sheet
2 0 elliptical cylinder
1 2 hyperboloid with two sheets
1 1 hyperbolic cylinder
1 1 two parallel planes
0 3
0 2 empty set
0 1
0 0
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Example 9: Translate the quadric surface
2X2 —y? + 3722+ 8xy —2yz + 6x + 102 =0
S0 as to express it in the form:
ax? + by? + cz% + 2gxy + 2hxz + 2kyz = K.
Solution: Suppose (p, g, r) is translated to the origin.
Then the new coordinates are (X, Y, Z) where:
X=X-p,Y=y—-(,Z=zZ—T.
Then 2(X + p)* = (Y +0)* + 3(Z +1)* + 8(X + p)(Y + q)
—2(Y+g)(Z+r)+6(X+p)+10(Z+1)=0.
Hence 2X? + 4pX + 2p? - Y2 -2qY — ¢ + 3Z2 + 6rZ
+ 3r2 + 8XY +8qgX + 8pY + 8pg - 2YZ - 2rY
—-29Z+6X+6p+10Z+10r=0
S0, 2X? — Y2+ 372+ 8XY —2YZ + 2(2p + 4q + 3)X
+2(-q+4p-r)Y +2Q2r—-q+5)Z
=-2p?+ g% - 3r>— 8pq — 6p — 10r

2 4 0 P -3
We solve 4 -1 -1{|9q|=-| 6 .
0o -1 2 r -5

2 4 0|-3 2 4 0|-3 2 4 0 |-3
4-1-1/6 |>[0-9-1|12|—>|0 1 -2|5
0-12]|-5 0-12|-5 0-9 -1|12
24 0 |-3 24 0 |-3
—|01 -2|5|5|01-2|5
00 —19|57 00 1 (-3
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Sor=-3,g=-1,p="%.
Translating (*2, —1, —3) to the origin the equation becomes
2X2 - Y?+ 372+ 8XY -2YZ =9/2.

Example 10: Identify the shape of the quadric surface
22 —y% — 72 - 2xy — 2xz — 2yz = 1.

X 4 -1 -1
Solution: Letvz@andQ: -1 1 -1},

-1 -1 1
Then the equation has the form viQv = 1.
tr(Q) =6, tro(Q) =6 and |Q| = -4 and so
vo(A) =A% —6A2+6)\ +4
=(A-2)(\2 - 4L -2)
So the eigenvalues of Q are 2, 2 + V6.
After a suitable rotation (we’re not asked to describe this
rotation) the equation becomes
2X2 + (2 +V6)Y2 + (2 — \6)Z2 = 1.
Since V6 > 2 this has two positive and one negative
coefficient and so it is a hyperboloid of one sheet.

Note that to merely identify the shape it isn’t necessary to
actually find the eigenvalues. Once we’ve found the
characteristic polynomial we only need to determine how
many zeros are positive, negative or zero. This can be
done by sketching the polynomial.
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Example 11: Identify the shape of the quadric surface:
X2+ 2y? + 322 + 8xy + 10xz + 12yz = 1.
1 4 5

X
Solution: Letv = @ and A=|4 2 6| Theequation
5 6 3

can be expressed as VTAv = 1.

tr(A) = 6; tr,(A)=-66; |Al=112,s0

ra(h) = A3 — 612 — 66 + 112.

Sketching this polynomial we can see that it has one
negative and two positive zeros. Hence the surface is a
hyperboloid with one sheet.

EXERCISES FOR CHAPTER 5

Exercise 1: Translate the conic:
X2+ 2y?—-3xy+7x—-10y=0
so that the equation has the form aX? + bY? + 2cXY =d.

Exercise 2: Find a suitable rotation so that the conic:
11x2 + 9y2 — 2v/3xy = 12 has the form aX? + bY?2 = ¢. Show
that the conic is an ellipse and find the lengths of the
major and minor axes.
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Exercise 3: Consider the conics of the form:

5x2 + 2y? + 2kxy =1
for various values of k. Show that, depending on k, this
can represent an ellipse, an hyperbola or a pair of straight
lines. Find the range of values of k for each of these
shapes.

Exercise 4: Identify the quadric surface:
72 =3x? +5y? + 4xy + 8yz = 1.

Exercise 5: Identify the quadric surface:
72 =3x2 + 5y? + 4xy + 8yz = 0.

SOLUTIONS FOR CHAPTER 5

Exercise 1: Let X=x+p,Y =y +qQ.
Then (X —p)* +2(Y — ) = 3(X = p)(Y =) + 7(X = p)
—10(Y - qg) =0,
S X2 2pX 4+ p?+2Y2 - 4qY + 207 - 3XY + 3gX + 3pY
-3pq+ 7/X-7p—-10Y +10g=0
X2+ 2Y2-3XY +(-2p+ 39+ 7)X + (-4q + 3p - 10)Y
+(p*+29°-3pq—7p +10q) =0
We choose p, g so that
—2p +3q=-7and
3p —4q =10.
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-2 3 |-7 -2 3 |-7 1 -1|3
3 —4l10) 7|1 -1/3)7l0 1]|-1)
Soq=-1,p=2
The translation X = x + 2, Y =y — 1 translates the conic
so that its equation has the form
axX?+bY?+2cXY =d
wherea=1,b=2,¢c=-3/2,

d=-(p?>+ 29> -3pq - 7p + 10q) = 12.
X
Exercise 2: Letv = (y)

Then the conic is VTAv = 12 where A = (_ 3 9

tr(A) = 20, |[A| =96 so
xa(h) =A% — 200 + 96 = (A — 8)(\ — 12).
The eigenvalues of A are thus 8, 12.

3 -3 J3 - 1
7\.=8A—8|=[_\/§ 1}-}[0 Ojso(\/éj

Is an eigenvector for A = 8.

-1 -3 1 /3 -3
x=12:A—12|=(_ﬁ _3}-{0 OJso( j

is an eigenvector for A = 12.
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As expected, these eigenvectors are orthogonal to one

another.
1( 1 -3

Let S = E \/§ 1 j Note that the columns of this

matrix are orthonormal so S is an orthogonal matrix.
Moreover |S| =1 and so S is a rotation matrix.

In fact S = (C(.)S 0 -sin ej where cos 0 =% and
sin® coso

sin 0 = %\3. Hence S is the matrix of a 60° rotation.
8 0

- -1 T
0 12).ThenA—SDS =SDS'.

LetD:(

Let v = Sw where w = @(j .

Then vTAv = v'SDS™v = w'Dw.
Hence the equation transforms to w'Dw = 12,
that is, 8X? + 12Y2 = 12.
L X? Y?
We can write this as (@)2 t 2= 1.
So the conic is an ellipse. The length of the major axis is

2 % =6 and the length of the minor axis is 2. This new

ellipse is obtained from rotating the original ellipse
through a rotation of 60° about the origin.

163



k 2

Then the equation can be expressed as VIAv = 1.
The shape depends on the values of the eigenvalues.
ya(h) = A2 =71 + (10 — k?).

7++/49-4(10-K?)

X 5 k
Exercise 3: Letv = y and A = .

The eigenvalues are o =

2
7 ++/9 + 4k? 7 —/9+ 4k?
= 5 and B = > .

Clearly o >0and B < a.

The conic can be rotated so that its equation is:
aX?+pY?=1.

If B > 0O this is an ellipse.

If B =0 itis a pair of straight lines.

If B <0 it’s a hyperbola.

Now if B =0, V9+4k* =7, 509 + 4k? = 49 and hence
k? = 10.

If k% < 10 then B > 0. In this case the conic is an ellipse.
If k2 > 10 then a. > 0 and B < 0. This gives a hyperbola.

range B SHAPE
—V10 <k <410 >0 |ellipse
k=10 =0 | pair of straight lines
k<—+100r k>+10| <0 | hyperbola
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-3 -2 0

X
Exercise 4: Letv = @ andA=|-2 -5 -4
0 -4 1
Then the equation is VTAv = 1.
tr(A)=-17, try(A)=-13, |A|=59and so
ya(d) = A%+ 7A2 - 13)\ — 59.
Sketching this we see that it has one positive zero and two

negative zeros. Hence the quadric surface is a hyperboloid
with two sheets.

. -3 -2 0
Exercise 5: Letv:@andA: -2 -5 -4
0O -4 1

Then the equation is vTAv = 0.
As in exercise 4, ya(A) = A* + 7A% — 13X\, — 59, which has
one positive zero and two distinct negative ones.
The equation, after a suitable rotation, will have the form:
X2 Y?
Z e S Z°
The cross-sections by planes parallel to the X-Y plane
will be ellipses, except for the X-Y plane itself, where the
cross-section is just the origin. The cross sections by
planes parallel to the Y-Z and X-Z planes will be
hyperbolas, except for the Y-Z and X-Z planes
themselves where the cross-section will be a pair of
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straight lines. This is not an hyperboloid with one sheet
because the constant in the equation is zero. It’s best
described as an elliptical cone.
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