
 

141 

 

5. CONICS AND QUADRIC 

SURFACES 
 

§5.1. Conics 
The equation of a circle, centred at the origin and with 

radius  r,  is x2 + y2 = r2. 

An ellipse centred on 

the origin, and with its 

axes along the x- and y- 

axes, has an equation of 

the form: 
x2

a2  + 
y2

b2 = 1. 

Here, a and b are the semi major and axes. 

 

Both of these have the form Ax2 + By2 = 1. Once we move 

the centre we introduce x and y terms. For example, if the 

above ellipse is moved to the point 

(h, k) its equation becomes 

(x −h)2

a2   + 
(y − k)2

b2   = 1. 

This has the form: 

Ax2 + By2 + Cx + Dy = 1. 

 



 

142 

 

Once we start rotating the axes we introduce xy terms. 

 

The standard rectangular hyperbola has equation xy = 1, 

but if we rotate it through 45 so that the axes of symmetry 

lie along the coordinate axes its equation becomes: 

x2 − y2 = 2. 

 

These are examples of conics. The geometrical definition 

of a conic is that it is the intersection of a cone with a 

plane. Traditionally a cone has a base, but the cone we’re 

thinking of here is what you might call a ‘double cone’. If 

you rotate a line through another line that intersects the 

original line, the infinite surface that results is a cone. 
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A conic is usually what we 

would call a ‘curve’ but it’s 

possible, by taking the 

intersecting plane through 

the vertex of the cone, to get 

a pair of straight lines, or 

even a single point. These are 

called degenerate conics. 

 

Example 1: The cone x2 + y2 = z2 has its vertex at the 

origin and its axis of rotational symmetry along the z-axis. 

If we intersect this with the x-y plane we get just the 

origin. If we intersect it with the x-z plane we get a pair 

of straight lines. 

 

§5.2. Degenerate Conics 
The word ‘degenerate’ in mathematics refers to cases that 

technically satisfy the definition, but which are 

uninteresting because they are much simpler than the 

usual examples. Another word that is used in this sense is 

‘trivial’, as in the trivial solution to a system of 

homogeneous linear equations. 

 

Other degenerate conics arise from a degenerate cone, 

namely a cylinder. A cylinder, after all, is the surface 

obtained when one line rotates around a parallel one. It 

might be argued that these lines don’t intersect. We 
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certainly don’t want to include the case of two skew lines 

intersecting, but we sometimes consider two parallel lines 

as intersecting at a ‘point at infinity’. In order to make this 

geometric definition agree with the algebraic definition 

that we’ll shortly present, we must include a cylinder as 

an honorary cone. 

 

Degenerate conics include, as we have seen, a pair of 

intersecting straight lines. Intersecting a cylinder with a 

plane we get circles and ellipses (these are certainly not 

degenerate but we can get them from an actual cone), a 

pair of parallel lines, a single line and the empty set. These 

last three are considered degenerate. 

 

Example 2: Intersecting the cylinder x2 + y2 = 1 with the 

x-z plane we get a pair of parallel lines, at a distance of 2 

apart. In the x-y plane we can get such a pair of parallel 

lines from the equation x2 − 1 = 0. 

 

Example 3: Intersecting the cylinder x2 + y2 = 1 with the 

plane x = 1 (a tangent plane to the cylinder) we get a single 

line.. In the x-y plane we can get a single line from the 

equation x2 − 2x + 1 = 0.. Since this is (x − 1)2 = 0 the line 

is the one with the simpler equation x = 1. 
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Example 4: Intersecting the cylinder x2 + y2 = 1 with 

plane x = 2 we get the empty set. In the x-y plane we can 

get the empty set from the equation  x2 + 1 = 0. 

 

§5.3. The Algebraic Definition of a Conic 
The algebraic definition of a conic is that it is the set of 

points that satisfy an equation of the form: 

ax2 + by2 + 2gx + 2fy + 2hxy + c = 0 

where at least one of a, b and h is non-zero. 

 

It can be shown that the two definitions agree, provided 

we allow the cylinder to be considered as a degenerate 

cone. However the only extra shapes that arise by 

including the cylinder are degenerate ones. 

 

 Throughout this chapter we’ll only be considering 

vectors in ℝ3, where the distinction between vectors and 

scalars can be maintained. So we’ll revert to the practice 

of printing vectors in bold type. 

 

Consider the conic ax2 + by2 + 2gx + 2fy + 2hxy + c = 0. 

If we let v = 
















1

y

x

 and Q = 
















cfg

fbh

gha

 then we can 

express the equation as vTQv = 0. 
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Strictly speaking it’s the11 matrix whose single 

component is this expression, but we identify 11 

matrices with their associated scalar. 

 

In most cases, as we show in the next theorem, we can 

translate the conic so as to eliminate the x and y terms to 

obtain an equation of the form ax2 + by2 + 2hxy = c. 

Moreover, if c  0 we can divide through by c and obtain 

an equation of the form: 

ax2 + by2 + 2hxy = 1. 

So, apart from those cases where translation cannot 

remove the x and y terms, a conic has one or other of the 

forms: 

ax2 + by2 + 2hxy = 1 or 

ax2 + by2 + 2hxy = 0. 

 

If we now put v = 








y

x
 and Q = 









bh

ha
 we can write 

these equations as either vTQv = 1 or vTQv = 0. 

 

Theorem 1: If a conic has the equation: 

ax2 + by2 + 2gx + 2fy + 2hxy + c = 0 

and h2  ab then after a suitable translation the equation 

becomes: 

aX2 + bY2 + 2hXY = K, for some K. 
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Proof: Suppose h2  ab. Let X = x − p and Y = y − q for 

some p, q. 

The lines x = p and y = q become the new axes and (p, q) 

gets translated to the origin. 

Then a(X + p)2 + b(Y + q)2 + 2g(X + p) + 2f(Y + q) 

                                             + 2h(X + p)(Y + q) + c = 0. 

Hence: 

aX2 + bY2 + 2hXY + 2(ap + g + hq)X + 2(bq + f + hp)Y 

                  + (2p2 + 2q2 + 2gp + 2fq + 2hpq + c) = 0. 

Since h2  ab we can solve the equation: 










bh

ha









q

p
 = − 









f

g
. 

Using these values of p, q we get, as the equation of the 

translated conic: 

aX2 + bY2 + 2hXY = K 

where K = − (2p2 + 2q2 + 2gp + 2fq + 2hpq + c). ☺ 

 

Example 5: Find a translation of the conic 

3x2 + y2 + 2xy + 10x − 6y + 7 = 0 

so that it has an equation with no x and y terms. 

Solution: Translate (p, q) to the origin. 

Then X = x − p, Y = y − q. 

Hence 3(X + p)2 + (Y + q)2  + 2(X + p)(Y + q) 

                           + 10(X + p) − 6(Y + q) + 7 = 0, and so 

3X2 + Y2 + 2XY + 2(3p + q + 5)X + 2(q + p − 3)Y 

                             + (3p2 + q2 + 2pq + 10p − 6q + 7) = 0. 
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Solving 








11

13










q

p
 = 







−

3

5
 we get: 










q

p
 = 









11

13
−1








−

3

5
 = 

1

2
 









−

−

31

11








−

3

5
 = 







−

7

4
. 

So, translating (−4, 7) to the origin the equation becomes: 

3X2 + Y2 + 2XY = 34. 

 

If ab  h2 the general conic: 

ax2 + by2 + 2gx + 2fy + 2hxy + c = 0 

can be translated so that it has an equation of the form: 

aX2 + bY2 + 2hXY = K. 

If K  0 we can divide through by K and so put the 

equation in the form: 

aX2 + bY2 + 2hXY = 1. 

The expression aX2 + bY2 + 2hXY is called a quadratic 

form. 

 

§5.4. Quadratic Forms 
A quadratic form is an expression of the form vTQv, 

where v = 









x1

x2

....

xn

 and Q is an n  n real symmetric matrix. 
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Example 6: A quadratic form in two variables x, y has the 

form ax2 + by2 + 2hxy = ( )yx, 








bh

ha









y

x
. 

 

Example 7: The expression: 

5x2 + y2 − 2z2 + 4xy − 2xz + 10yz 

is a quadratic form in 3 variables. It can be expressed as 

(x, y, z) 
















−−

−

251

512

125

















z

y

x

. 

 

Theorem 2: If Q is an n  n real symmetric matrix and 

v = 









x1

x2

....

xn

 then there exists an orthogonal matrix R, with 

|R| = 1, and a real diagonal matrix D, such that if u = Rv 

then vTQv = uTDu = 1
2 + 2

2 + … + n
2 for some real 

numbers 1, 2, …, n. 

Proof: Let Q be an n  n real symmetric matrix. Then its 

eigenvalues, 1, 2,..., n are real. There’s a real 

orthogonal eigenmatrix S such that Q = SDS−1 = SDST. 

Since |S| =  1 we may swap two columns of S to ensure 

that |S| = 1. 
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Let R = ST. It is also orthogonal and |R| = 1. 

Let u = Rv = STv = S−1v. Then v = Su. 

So we have vTQv = (Su)TQ(Su) 

                             = uTSTQSu 

                             = uTST(SDST)Su 

                             = uT(STS)D(STS)u 

                             = uTDu. 

                             = 1
2 + 2

2 + … + n
2. ☺ 

 

Example 8: Consider the conic 6x2 + 3y2 + 4xy = 1. 

Let v = 








y

x
 and Q = 









32

26
. 

tr(Q) = 9 and |Q| = 14 so 

Q() = 2 − 9 + 14 = ( − 7)( − 2). 

 

The eigenvalues of Q are 2, 7. 

 = 2: Q − 2I = 








12

24
 → 









00

12
 

so 








− 2

1
 is an eigenvector. 

 = 7: Q − 7I = 








−

−

42

21
 → 







 −

00

21
 

so 








1

2
 is an eigenvector. 
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These are orthogonal, but don’t have unit length. Instead 

take 








− 2

1

5

1
 and 









1

2

5

1
. 

So S = 








− 12

21

5

1
 is an orthonormal eigenmatrix. 

Note that |S| = 1 so we don’t have to swap columns.  

Hence Q = SDST = RTDR where R = ST and D = 








70

02
. 

If u = Rv, then 

vTQv = vTRTDRv 

         = uTDu. 

If u = 






X

Y
 then vTQv = 

(X, Y) 








70

02
 






X

Y
  so the 

equation becomes: 

2X2 + 7Y2 = 1, which is 

the equation of an ellipse. 

 

Recall that a 2  2 orthogonal matrix with determinant 1 

has the form 






cos  − sin 

sin     cos 
 and so corresponds to a 

rotation through . A similar result holds for a 3  3 

orthogonal matrix, although we don’t bother to identify 

precisely which rotation it corresponds to. 
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Theorem 3: A 3  3 orthogonal  matrix with determinant 

1 is the matrix of a rotation. 

Proof: Suppose R is a 3  3 orthogonal matrix with 

|R| = 1 and let e1, e2, e3 be the standard basis vectors. 

 

Then Re1, Re2, Re3 are mutually orthogonal unit vectors. 

 

Since |R| = 1 they will be a positive triple, like the 

standard basis. 

 

Hence the three standard basis vectors can be rotated to 

the new basis Re1, Re2, Re3. ☺ 

 

It follows that a conic of the form ax2 + bx2 + 2hxy = 1 

can be rotated so that its equation has the form: 

Ax2 + By2 = 1. 

Similarly, if a conic has the equation Ax2 + By2 = 0 it can 

be rotated so that its equation has the form Ax2 + By2 = 0. 

Here A, B will be the eigenvalues of the matrix 








bh

ha
. 

This results in the following types of conic. 

[Here, the symbols have a different meaning to the 

coefficients above, but these are the traditional symbols 

used for conics.] 
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CONIC Ax2 + By2 = K 

K A B Usual 

Equation 

Description 

1 +ve +ve x2

a2 + 
y2

b2  = 1 
ellipse 

1 +ve −ve x2

a2 − 
y2

b2  = 1 
 

hyperbola 

1 −ve +ve x2

a2 − 
y2

b2  = −1 

1 −ve −ve x2

a2 + 
y2

b2  = −1 
empty set 

1 +ve 0 x2 = a2 pair of parallel lines 

1 −ve 0 x2 = − a2 empty set 

1 0 0 0 = 1 empty set 

1 0 +ve y2 = b2 pair of parallel lines 

1 0 −ve y2 = − b2 empty set 

0 +ve +ve x2

a2 + 
y2

b2  = 0 
 

origin 
0 −ve −ve 

0 +ve −ve x2

a2 − 
y2

b2  = 0 
pair of intersecting 

lines 0 −ve +ve 

0 +ve 0  

x = 0 
 

line 
0 −ve 0 

0 0 0 0 = 1 empty set 

0 0 +ve  

y = 0 
 

line 
0 0 −ve 
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 You will 

notice that the 

parabola is missing 

from this list. That’s 

because there is no 

translation of the 

equation that will 

eliminate the x, y 

terms. A further analysis will show that this is the only 

additional conic. 

 

§5.5. Quadric Surfaces 
The 3 dimensional analogues of conics are quadric 

surfaces. These have an equation of the form vTQv = K 

where 

v =









 x 

 y 

 z 

 1 

 and Q is a real 

symmetric matrix. 

 

They include the ellipsoid. If the centre is the origin and 

the axes are aligned with the coordinate axes, it has an 

equation of the form 
x2

a2 + 
y2

b2  + 
z2

c2  = 1. 



 

155 

 

Other familiar quadric surfaces 

are the (infinite) cylinder 

x2 + y2 = r2 and the 

(double) cone x2 + y2 = a2z2. 

The parabolic mirror is a 

paraboloid, and this is another 

example of a quadric surface. 

As with conics, if we’re given 

the equation of a quadric surface we want to be able to 

identify the type of surface, where it is located, and how 

it’s oriented relative to the axes. 

 

It’s possible to analyse quadric surfaces in the same way 

as conics. Most quadric surfaces can be translated so that 

the x, y and z terms disappear. (A notable exception is the 

paraboloid.) The resulting equation will have the form: 

ax2 + by2 + cz2 + 2gxy + 2hxz + 2kyz = 0 or 1. 

This can be written as (x, y, z)
















ckh

kbg

hga







x

y

z
  = 0 or 1. 

The left hand side of this equation is a quadratic form and 

can be expressed as vTQv where v = 






x

y

z
 . Because Q is 

real and symmetric it has an orthogonal basis of 

eigenvectors and its eigenvalues are real. 
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By Theorem 2 a quadratic surface with equation vTQv = 

1 can be rotated about the origin so that it has an equation 

of the form Ax2 + By2 + Cz2 = 1. 

 

If A, B, C are all positive we get an 

ellipsoid with an equation which is 

normally written as 
x2

a2  + 
y2

b2  + 
z2

c2  = 1. 

The constants a, b and c are the 

lengths of the semi-axes. 

 

If A, B are positive and C is negative 

we get an equation of the form: 
x2

a2  + 
y2

b2  − 
z2

c2  = 1, which is called a 

hyperboloid with one sheet. 

If A is positive and B, C are negative 

we get 
x2

a2  − 
y2

b2  − 
z2

c2  = 1 which is 

called a hyperboloid of two sheets. 

The word ‘sheet’ here refers to the 

separate pieces. Of course if A, B, C 

are all negative we get the empty set! 

 

If one coefficient is zero we can get an elliptical prism or 

a hyperbolic cylinder. These are like a cylinder but where 
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the cross sections are copies of the same ellipse or 

hyperbola. 

 

Analysing quadric surfaces with an equation of the form 

Ax2 + By2 + Cz2 = 0 we get a cone if A, B and C don’t all 

have the same sign. Of course, if they have the same sign 

we get just the origin. Further degenerate quadric surfaces 

can be obtained by considering the case where one or 

more of A, B, C is zero. 

 

NON-DEGENERATE QUADRIC 

SURFACES WITH EQUATION 

Ax2 + By2 + Cz2 = 1 

# +ve 

coeffs 
# −ve 

coeffs 

Surface 

3 0 ellipsoid 

2 1 hyperboloid with one sheet 

2 0 elliptical cylinder 

1 2 hyperboloid with two sheets 

1 1 hyperbolic cylinder 

1 1 two parallel planes 

0 3  

empty set 0 2 

0 1 

0 0 
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Example 9: Translate the quadric surface 

2x2 − y2 + 3z2 + 8xy − 2yz + 6x + 10z = 0 

so as to express it in the form: 

ax2 + by2 + cz2 + 2gxy + 2hxz + 2kyz = K. 

Solution: Suppose (p, q, r) is translated to the origin. 

Then the new coordinates are (X, Y, Z) where: 

X = x − p, Y = y − q, Z = z − r. 

Then 2(X + p)2 − (Y + q)2 + 3(Z + r)2 + 8(X + p)(Y + q) 

                  − 2(Y + q)(Z + r) + 6(X + p) + 10(Z + r) = 0. 

Hence 2X2 + 4pX + 2p2 − Y2 − 2qY − q2 + 3Z2 + 6rZ 

           + 3r2 + 8XY + 8qX + 8pY + 8pq − 2YZ − 2rY 

           − 2qZ + 6X + 6p + 10Z + 10r = 0 

So, 2X2 − Y2 + 3Z2 + 8XY − 2YZ + 2(2p + 4q + 3)X 

      + 2(− q +4p − r)Y + 2(2r − q + 5)Z 

= −2p2 + q2 − 3r2 − 8pq − 6p − 10r 

 We solve 
















−

−−

210

114

042

















r

q

p

= 
















−

−

5

6

3

. 

















−

−

−

−

−

5

6

3

2

1

0

1

1

4

0

4

2

→
















−

−

−

−

−

5

12

3

2

1

0

1

9

4

0

0

2

→














 −

−

−

− 12

5

3

1

2

0

9

1

4

0

0

2

 

→














 −

−

−

57

5

3

19

2

0

0

1

4

0

0

2

→
















−

−

−

3

5

3

1

2

0

0

1

4

0

0

2

. 
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So r = − 3, q = − 1, p = ½. 

Translating (½, −1, −3) to the origin the equation becomes 

2X2 − Y2 + 3Z2 + 8XY − 2YZ = 9/2. 

 

Example 10: Identify the shape of the quadric surface 

2x2 − y2 − z2 − 2xy − 2xz − 2yz = 1. 

Solution: Let v = 






x

y

z
 and Q = 

















−−

−−

−−

111

111

114

. 

Then the equation has the form vTQv = 1. 

tr(Q) = 6, tr2(Q) = 6 and |Q| = −4 and so 

Q() = 3 − 62 + 6 + 4 

          = ( − 2)(2 − 4 − 2) 

So the eigenvalues of Q are 2, 2  6. 

After a suitable rotation (we’re not asked to describe this 

rotation) the equation becomes 

2X2 + (2 + 6)Y2 + (2 − 6)Z2 = 1. 

Since 6 > 2 this has two positive and one negative 

coefficient and so it is a hyperboloid of one sheet. 

 

Note that to merely identify the shape it isn’t necessary to 

actually find the eigenvalues. Once we’ve found the 

characteristic polynomial we only need to determine how 

many zeros are positive, negative or zero. This can be 

done by sketching the polynomial. 
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Example 11: Identify the shape of the quadric surface: 

x2 + 2y2 + 3z2 + 8xy + 10xz + 12yz = 1. 

Solution: Let v = 






x

y

z
 and A = 

















365

624

541

. The equation 

can be expressed as vTAv = 1. 

tr(A) = 6;   tr2(A) = − 66;   |A| = 112, so 

A() = 3 − 62 − 66 + 112. 

Sketching this polynomial we can see that it has one 

negative and two positive zeros. Hence the surface is a 

hyperboloid with one sheet. 

 

EXERCISES FOR CHAPTER 5 
 

Exercise 1: Translate the conic: 

x2 + 2y2 − 3xy + 7x − 10y = 0 

so that the equation has the form  aX2 + bY2 + 2cXY = d. 

 

Exercise 2: Find a suitable rotation so that the conic: 

11x2 + 9y2 − 23xy = 12 has the form aX2 + bY2 = c. Show 

that the conic is an ellipse and find the lengths of the 

major and minor axes. 
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Exercise 3: Consider the conics of the form: 

5x2 + 2y2 + 2kxy = 1 

for various values of k. Show that, depending on k, this 

can represent an ellipse, an hyperbola or a pair of straight 

lines. Find the range of values of k for each of these 

shapes. 

 

Exercise 4: Identify the quadric surface: 

z2 = 3x2 + 5y2 + 4xy + 8yz = 1. 

 

Exercise 5: Identify the quadric surface: 

z2 = 3x2 + 5y2 + 4xy + 8yz = 0. 

 

SOLUTIONS FOR CHAPTER 5 
 

Exercise 1: Let X = x + p, Y = y + q. 

Then (X − p)2 + 2(Y − q)2 − 3(X − p)(Y − q) + 7(X − p) 

                                           − 10(Y − q) = 0. 

 X2 − 2pX + p2 + 2Y2 − 4qY + 2q2 − 3XY + 3qX + 3pY 

                                      − 3pq + 7X − 7p − 10Y + 10q = 0 

 X2 + 2Y2 − 3XY + (−2p + 3q + 7)X + (−4q + 3p − 10)Y 

                                      + (p2 + 2q2 − 3pq − 7p + 10q) = 0 

We choose p, q so that 

−2p + 3q = −7 and 

    3p − 4q = 10. 
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











 −

−

−

10

7

43

32
  → 












 −

−

−

3

7

11

32
 → 














−

−

1

3

10

11
.  

So q = −1, p = 2. 

The translation X = x + 2, Y = y − 1 translates the conic 

so that its equation has the form 

aX2 + bY2 + 2cXY = d 

where a = 1, b = 2, c = − 3/2, 

d = − (p2 + 2q2 − 3pq − 7p + 10q) = 12. 

 

Exercise 2: Let v = 








y

x
. 

Then the conic is vTAv = 12 where A = 













−

−

93

311
. 

tr(A) = 20, |A| = 96 so 

A() = 2 − 20 + 96 = ( − 8)( − 12). 

The eigenvalues of A are thus 8, 12. 

 = 8: A − 8I = 













−

−

13

33
 → 












 −

00

13
 so 









3

1
 

is an eigenvector for  = 8. 

 = 12: A − 12I = 













−−

−−

33

31
 → 














00

31
 so 












−

1

3
 

is an eigenvector for  = 12. 
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As expected, these eigenvectors are orthogonal to one 

another. 

Let S = 











 −

13

31

2

1
. Note that the columns of this 

matrix are orthonormal so S is an orthogonal matrix. 

Moreover |S| = 1 and so S is a rotation matrix. 

In fact S = 






cos  − sin 

sin     cos 
 where cos  = ½  and 

sin  = ½3. Hence S is the matrix of a 60 rotation. 

Let D = 








120

08
. Then A = SDS−1 = SDST. 

Let v = Sw where  w = 






X

Y
 . 

Then vTAv = vTSDSTv = wTDw. 

Hence the equation transforms to wTDw = 12, 

that is, 8X2 + 12Y2 = 12. 

We can write this as 
X2

 ( )3/2 2
  +  

Y2

 12  = 1. 

So the conic is an ellipse. The length of the major axis is 

2
3

2  = 6 and the length of the minor axis is 2. This new 

ellipse is obtained from rotating the original ellipse 

through a rotation of 60 about the origin. 
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Exercise 3: Let v = 








y

x
 and A = 









2

5

k

k
. 

Then the equation can be expressed as vTAv = 1. 

The shape depends on the values of the eigenvalues. 

A() = 2 − 7 + (10 − k2). 

The eigenvalues are  = 
( )

2

104497 2k−−+
 

= 
2

497 2k++
 and  =  

2

497 2k+−
. 

Clearly  > 0 and  < . 

The conic can be rotated so that its equation is: 

X2 + Y2 = 1. 

If  > 0 this is an ellipse. 

If  = 0 it is a pair of straight lines. 

If  < 0 it’s a hyperbola. 

Now if  = 0, 749 2 =+ k , so 9 + 4k2 = 49 and hence 

k2 = 10. 

If k2 < 10 then  > 0. In this case the conic is an ellipse. 

If k2 > 10 then  > 0 and  < 0. This gives a hyperbola. 

 

range  SHAPE 

− 10 < k < 10 > 0 ellipse 

k =  10 = 0 pair of straight lines 

k < − 10 or k > 10 < 0 hyperbola 
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Exercise 4: Let v = 






x

y

z
  and A = 

















−

−−−

−−

140

452

023

. 

Then the equation is vTAv = 1. 

tr(A) = − 7,   tr2(A) = − 13,   |A| = 59 and so 

A() = 3 + 72 − 13 − 59. 

Sketching this we see that it has one positive zero and two 

negative zeros. Hence the quadric surface is a hyperboloid 

with two sheets. 

 

Exercise 5: Let v = 






x

y

z
 and A = 

















−

−−−

−−

140

452

023

. 

Then the equation is vTAv = 0. 

As in exercise 4, A() = 3 + 72 − 13 − 59, which has 

one positive zero and two distinct negative ones. 

The equation, after a suitable rotation, will have the form: 
X2

a2  + 
Y2

b2   = Z2. 

The cross-sections by planes parallel to the X-Y plane 

will be ellipses, except for the X-Y plane itself, where the 

cross-section is just the origin. The cross sections by 

planes parallel to the Y-Z and X-Z planes will be 

hyperbolas, except for the Y-Z and X-Z planes 

themselves where the cross-section will be a pair of 



 

166 

 

straight lines. This is not an hyperboloid with one sheet 

because the constant in the equation is zero. It’s best 

described as an elliptical cone. 

 


